ADVERTENTIE

Ruimteweer, zonnewindstoringen en radio-uitbarstingen

Solar wind, the stream of electrically charged particles emanating from the outer atmospheric layer corona of Sun, poses threat to life form and electrical technology based modern human society. Earth’s magnetic field provide protection against the incoming solar wind by deflecting them away. Drastic solar events like mass ejection of electrically charged plasma from the corona of Sun creates disturbances in the solar wind. Therefore, study of disturbances in the conditions of solar wind (called Tussenruimte weather) is an imperative. Coronal Mass Ejection (CMEs), also called ‘solar storms’ or ‘ruimte storms’ is associated with the solar radio bursts. Study of solar radio bursts in the radio observatories can give an idea about CMEs and solar wind conditions. The first statistical study (published recently) of 446 recorded type IV radio bursts observed in the last solar cycle 24 (each cycle refers to the change in Sun’s magnetic field every 11 years), have found that the majority of Long Duration Type IV Radio Solar Bursts were accompanied by Coronal Mass Ejection (CMEs) and disturbances in the solar wind conditions. 

Just the way weather on Earth is affected by the disturbances in the wind, ruimte weather’ is affected by the disturbances in the ‘solar wind’. But the similarity ends here. Unlike wind on Earth which is made of air comprising of atmospheric gases like nitrogen, oxygen etc, the solar wind consists of superheated plasma comprising of electrically charged particles like electrons, protons, alpha particles (helium ions) and heavy ions that continuously emanate from the sun’s atmosphere in all directions including in the direction of Earth.   

Sun is the ultimate source of energy to life on Earth hence respected in many cultures as giver of life. But there is other side too. The solar wind, the continuous stream of electrically charged particles (viz. plasma) originating from the solar atmosphere poses threat to the life on Earth. Thanks to Earth’s magnetic field that deflects most of the ionising solar wind away (from the Earth) and the Earth’s atmosphere that absorb most of the remaining radiation thus providing protection from the ionising radiation. But there is more to it – in addition to threat to the biological life forms, solar wind also poses threat to electricity and technology driven modern society. The electronic and computer systems, power grids, oil and gas pipelines, telecom, radio communication including mobile phone networks, GPS, ruimte missions and programmes, satellite communications, internet etc. – all these can potentially be disrupted and brought to standstill by disturbances in solar wind1. Vooral astronauten en ruimtevaartuigen lopen gevaar. Er waren in het verleden verschillende gevallen hiervan, bijvoorbeeld maart 1989 'Quebec Black-out'' in Canada veroorzaakt door enorme zonnevlammen had het elektriciteitsnet zwaar beschadigd. Ook enkele satellieten hadden schade geleden. Daarom is het noodzakelijk om de omstandigheden van de zonnewind in de buurt van de aarde in de gaten te houden - hoe de kenmerken zoals snelheid en dichtheid, magnetisch veld strength and orientation, and energetic particle levels (i.e., ruimte weather) will have an impact on life forms and modern human society.  

Like ‘weather prediction’, can ‘ruimte weather’ too be predicted? What determines the solar wind and its conditions in the vicinity of Earth? Can any serious changes in ruimte weather be known in advance to take pre-emptive actions to minimise damaging impact on Earth? And, why at all does the solar wind form?   

De zon is een bal van heet elektrisch geladen gas en heeft daarom geen duidelijk oppervlak. De fotosfeerlaag wordt behandeld als het oppervlak van de zon, omdat we dit met licht kunnen waarnemen. Lagen onder de fotosfeer naar binnen naar de kern zijn ondoorzichtig voor ons. De zonneatmosfeer bestaat uit lagen boven het fotosfeeroppervlak van de zon. Het is de transparante gasvormige halo die de zon omringt. Beter gezien vanaf de aarde tijdens de totale zonsverduistering, heeft de zonneatmosfeer vier lagen: chromosfeer, zonne-overgangsgebied, corona en heliosfeer.  

Solar wind is formed in corona, the second layer (from outside) of the solar atmosphere. Corona is a layer of very hot plasma. While the temperature of the surface of the Sun is about 6000K, the average temperature of corona is about 1-2 million K. Called ‘Coronal Heating Paradox’, the mechanism and the processes of heating of corona and acceleration of the solar wind to very high speed and expansion into interplanetair ruimte is not well understood yet, hoewel onderzoekers in een recent artikel hebben geprobeerd dit op te lossen door middel van axion (het hypothetische elementaire deeltje van donkere materie) oorsprongsfotonen 3.  

Occasionally, huge amount of hot plasma is ejected from corona into the outermost layer of solar atmosphere (heliosphere). Called Coronal Mass Ejections (CMEs), the mass ejections of plasma from corona are found to generate large disturbances in solar wind temperature, velocity, density and interplanetair magnetic field. These create strong magnetic storms in the geomagnetic field of the Earth 4. Uitbarsting van plasma uit corona omvat versnelling van elektronen en versnelling van geladen deeltjes genereert radiogolven. Als gevolg hiervan worden coronale massa-ejecties (CME's) ook geassocieerd met uitbarstingen van radiosignalen van de zon 5. daarom ruimte weather studies would involve study of timing and intensity of mass ejections of plasma from the corona in conjunction with the associated solar bursts which is a Type IV radio burst lasting for long-duration (greater than 10 min.).    

Het optreden van radio-uitbarstingen in de eerdere zonnecycli (de periodieke cyclus van het magnetische veld van de zon om de 11 jaar) in verband met coronale massa-ejecties (CME's) is in het verleden bestudeerd.  

Een recent statistisch onderzoek op lange termijn door Anshu Kumari et al. van Universiteit van Helsinki op radio-uitbarstingen waargenomen in de zonnecyclus 24, werpt verder licht op de associatie van radio-uitbarstingen van lange duur met bredere frequentie (genaamd type IV-uitbarstingen) met CME's. Het team ontdekte dat ongeveer 81% van de type IV-uitbarstingen werd gevolgd door coronale massa-ejecties (CME's). Ongeveer 19% van de type IV-bursts ging niet gepaard met CME's. Bovendien gaat slechts 2.2% van de CME's gepaard met radio-uitbarstingen van type IV 6.  

Understanding the timing of type IV long duration bursts and the CMEs in an incremental manner will help in the design and timing of the ongoing and future ruimte programs accordingly, so as to lessen the impact of these on such missions and ultimately on the life forms and the civilization on Earth. 

***

Referenties:    

  1. White SM.,  nd. Solar Radio Bursts and Tussenruimte Weather. University of Maryland. Available online at https://www.nrao.edu/astrores/gbsrbs/Pubs/AJP_07.pdf Betreden op 29 Jamaury 2021. 
  1. Aschwanden MJ et al 2007. De coronale verwarmingsparadox. The Astrophysical Journal, Volume 659, Nummer 2. DOI: https://doi.org/10.1086/513070  
  1. Rusov VD, Sharph IV, et al 2021. Oplossing van het coronale verwarmingsprobleem door middel van fotonen met axionoorsprong. Physics of the Dark Universe Volume 31, januari 2021, 100746. DOI: https://doi.org/10.1016/j.dark.2020.100746  
  1. Verma PL., et al 2014. Coronale massa-ejecties en verstoringen in plasmaparameters van zonnewind in relatie tot geomagnetische stormen. Journal of Physics: Conference Series 511 (2014) 012060. DOI: https://doi.org/10.1088/1742-6596/511/1/012060   
  1. Gopalswamy N., 2011. Coronale massa-ejecties en zonne-radio-emissies. CDAW-datacentrum NASA. Online verkrijgbaar bij https://cdaw.gsfc.nasa.gov/publications/gopal/gopal2011PlaneRadioEmi_book.pdf Betreden op 29 januari 2021.  
  1. Kumari A., Morosan DE., en Kilpua EKJ., 2021. Over het optreden van type IV zonne-radio-uitbarstingen in zonnecyclus 24 en hun associatie met coronale massa-ejecties. Gepubliceerd op 11 januari 2021. The Astrophysical Journal, Volume 906, Number 2. DOI: https://doi.org/10.3847/1538-4357/abc878  

***

Umes Prasad
Umes Prasad
Wetenschapsjournalist | Oprichter en redacteur, Scientific European magazine

Abonneer u op onze nieuwsbrief

Om op de hoogte te blijven van het laatste nieuws, aanbiedingen en speciale aankondigingen.

Meest populaire artikelen

Stamcelmodellen van ziekten: eerste model van albinisme ontwikkeld

Wetenschappers hebben het eerste van een patiënt afgeleide stamcelmodel ontwikkeld...

De kleinste optische gyroscoop

Ingenieurs hebben 's werelds kleinste lichtgevoelige gyroscoop gebouwd die...

Groene thee versus koffie: de eerste lijkt gezonder

Volgens een onderzoek onder ouderen in Japan,...
- Advertentie -
94,492FansLike
47,677volgersVolg
1,772volgersVolg
30abonneesInschrijven